Therapeutic JAK inhibition does not impact lung injury during viral or bacterial pneumonia in male mice

治疗性 JAK 抑制不会影响雄性小鼠病毒性或细菌性肺炎期间的肺损伤

阅读:7
作者:Lokesh Sharma, Ravineel B Singh, Caden Ngeow, Rick van der Geest, Alexis M Duray, Nathanial J Tolman, Bryan J McVerry, Charles S Dela Cruz, John F Alcorn, William Bain, Keven M Robinson

Abstract

Influenza infections are often complicated by secondary bacterial infections such as MRSA pneumonia, which increase morbidity and mortality. Viral infections lead to an inflammatory response that includes elevated levels of IL-6 and interferons. IL-6 activates the JAK/STAT signaling pathway, amplifying downstream inflammation. Given the clinical efficacy of the JAK inhibitor baricitinib in reducing disease severity in COVID-19, we evaluated its impact in a murine model of influenza, MRSA, and post-influenza MRSA pneumonia. Additionally, because IL-6 inhibitory therapies have improved outcomes during COVID-19, we evaluated the impact of IL-6 deletion on post-influenza MRSA pneumonia. In our studies, baricitinib effectively inhibited the JAK/STAT pathway in the lungs, as demonstrated by decreased interferon-stimulated genes (ISGs) and STAT3 phosphorylation. Despite this inhibition, baricitinib did not cause a global suppression of cytokines. Notably, baricitinib treatment did not impair either antiviral or antibacterial host immunity, inflammatory cell recruitment, or lung tissue injury. IL-6 deficiency did not alter weight loss, inflammatory cell recruitment, or bacterial burden during post-influenza MRSA pneumonia. These findings suggest that both JAK inhibition via baricitinib and IL-6 deletion do not enhance host defense or limit tissue injury in murine models of influenza and post-influenza MRSA pneumonia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。