Magnetofection and isolation of DNA using polyethyleneimine functionalized magnetic iron oxide nanoparticles

使用聚乙烯亚胺功能化的磁性氧化铁纳米粒子进行 DNA 磁转染和分离

阅读:5
作者:Adheesha N Danthanarayana, Danushika C Manatunga, Rohini M De Silva, N Vishvanath Chandrasekharan, K M Nalin De Silva

Abstract

This study was carried out to develop a simple and efficient method to isolate DNA directly from biological samples using iron oxide nanoparticles (IONPs) functionalized with polyethyleneimine (PEI). IONPs were synthesized via co-precipitation method followed with direct attachment of branched PEI. Nanoparticles were characterized using STEM, FT-IR spectroscopy and XRD analysis. The binding capacity of synthesized PEI-IONPs for plasmid and genomic DNA was assessed using purified DNA samples. In order to elute bound DNA, elution conditions were optimized, changing pH, salt concentration and temperature. Synthesized PEI-IONPs were subjected to isolation of DNA from bacterial cell culture and from human blood. PCR and magnetofection of the enhanced green fluorescence protein (EGFP) were carried out to verify the downstream applications of isolated DNA. The results indicated that the synthesized nanoparticles were of 5-10 nm. The binding capacity of PEI-IONPs for plasmid DNA and genomic DNA were 5.4 and 8.4 µg mg-1, respectively, which were even higher than the commercially available kits such as Mag-bind, MagJET and Magmax. The optimized condition for plasmid DNA elution was 0.1 M Tris HCl (pH 10.0), 1.5 M NaCl and 5% formamide, maintained at the temperature of 60°C. The optimized condition for genomic DNA elution was 0.1 M Tris HCl (pH 10.0), 1.5 M NaCl and 10% formamide, maintained at 60°C. PCR and magnetofection processes were successful. This study revealed that the magnetic separation of DNA using PEI-IONPs is a simple and efficient method for direct isolation of DNA from biological samples which can be then used in various downstream applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。