Insulin reduces endoplasmic reticulum stress-induced apoptosis by decreasing mitochondrial hyperpolarization and caspase-12 in INS-1 pancreatic β-cells

胰岛素通过降低 INS-1 胰腺 β 细胞中的线粒体超极化和 caspase-12 减少内质网应激诱导的细胞凋亡

阅读:5
作者:Nanako Murata, Kana Nishimura, Naoki Harada, Tomoya Kitakaze, Eiji Yoshihara, Hiroshi Inui, Ryoichi Yamaji

Abstract

Pancreatic β-cell mass is a critical determinant of insulin secretion. Severe endoplasmic reticulum (ER) stress causes β-cell apoptosis; however, the mechanisms of progression and suppression are not yet fully understood. Here, we report that the autocrine/paracrine function of insulin reduces ER stress-induced β-cell apoptosis. Insulin reduced the ER-stress inducer tunicamycin- and thapsigargin-induced cell viability loss due to apoptosis in INS-1 β-cells. Moreover, the effect of insulin was greater than that of insulin-like growth factor-1 at physiologically relevant concentrations. Insulin did not attenuate the ER stress-induced increase in unfolded protein response genes. ER stress did not induce cytochrome c release from mitochondria. Mitochondrial hyperpolarization was induced by ER stress and prevented by insulin. The protonophore/mitochondrial oxidative phosphorylation uncoupler, but not the antioxidants N-acetylcysteine and α-tocopherol, exhibited potential cytoprotection during ER stress. Both procaspase-12 and cleaved caspase-12 levels increased under ER stress. The caspase-12 inhibitor Z-ATAD-FMK decreased ER stress-induced apoptosis. Caspase-12 overexpression reduced cell viability, which was diminished in the presence of insulin. Insulin decreased caspase-12 levels at the post-translational stages. These results demonstrate that insulin protects against ER stress-induced β-cell apoptosis in this cell line. Furthermore, mitochondrial hyperpolarization and increased caspase-12 levels are involved in ER stress-induced and insulin-suppressed β-cell apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。