Identification of the histone lysine demethylase KDM4A/JMJD2A as a novel epigenetic target in M1 macrophage polarization induced by oxidized LDL

鉴定组蛋白赖氨酸去甲基化酶 KDM4A/JMJD2A 为氧化 LDL 诱导的 M1 巨噬细胞极化中的新型表观遗传靶点

阅读:7
作者:Xue Wang, Siqing Wang, Gang Yao, Dehai Yu, Kexin Chen, Qian Tong, Long Ye, Chuan Wu, Yue Sun, Haixia Li, Dirk M Hermann, Thorsten R Doeppner, Fengyan Jin, Yun Dai, Jiang Wu

Abstract

Oxidized low density lipoprotein (oxLDL) induces macrophage activation, an event essential for atherosclerosis. Emerging evidence supports that epigenetic regulation plays important roles in macrophage activation and function. However, it remains unclear which epigenetic modulator is responsible for oxLDL-induced macrophage activation. Here, we identify for the first time KDM4A (JMJD2A) as an epigenetic modifying enzyme that controls oxLDL-induced pro-inflammatory M1 polarization of macrophages. OxLDL triggered M1 polarization of murine and human macrophages, characterized by expression of iNOS and robust production of inflammatory cytokines (e.g., TNF-α, MCP-1, IL-1β). In contrast, protein level of the M2 marker Arg1 was clearly decreased after treated with oxLDL. Notably, exposure to oxLDL resulted in markedly increased expression of KDM4A in macrophages. Functionally, shRNA knockdown of KDM4A significantly impaired M1 polarization and expression of inflammatory cytokines induced by oxLDL, accompanied by increased expression of Arg1 and VEGF. However, inhibition of KDM4A by shRNA or the pan-selective KDM inhibitor JIB-04 did not affect oxLDL-mediated activation of the NF-κB and hypoxia inducible factor (HIF) pathways, and vice versa. In addition, JIB-04 induced apoptosis of macrophages in a dose-dependent manner, an event attenuated by oxLDL. Together, these findings argue that KDM4A might represent a novel epigenetic modulator that acts to direct oxLDL-induced M1 polarization of macrophages, while its up-regulation is independent of NF-κB and HIF activation, two signals critical for pro-inflammatory activation of macrophages. They also suggest that KDM4A might serve as a potential target for epigenetic therapy in prevention and treatment of inflammatory diseases such as atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。