Chemical cross-linking facilitates antigen uptake and presentation and provides improved protection from Mpox with a dual-antigen subunit vaccine

化学交联促进抗原的吸收和呈递,并通过双抗原亚单位疫苗提供更好的 Mpox 保护

阅读:6
作者:Long Chen, Chao Shang, Zihao Wang, Mengzhu Zheng, Cuiling Zhang, Dapeng Li, Zhanqun Yang, Yuchao Dong, Yuru Xu, Yunsheng Yuan, Shiyong Fan, Wu Zhong, Jian Lin, Xiao Li

Abstract

Antigen uptake, processing, and presentation are crucial for the immune responses of protein-based vaccines. Herein, we introduced a reversible chemical cross-linking strategy to engineer protein antigens, which can be tracelessly removed upon antigen-presenting cell (APC) uptake and cellular reduction. The chemically cross-linked antigen proteins presented significantly enhanced uptake and epitope presentation by APC. We applied this strategy to monkeypox virus antigens A29L and A35R to construct dual-antigen subunit vaccines. Our results revealed that chemical cross-linking was robust enough to improve both proteins' APC uptake and lymph node accumulation, with each protein being chemically cross-linked and administered separately. In vivo validation revealed that the chemical cross-linking of the two antigen proteins improved immune responses, with increases in antigen-specific antibody and live virus-neutralizing antibody production. Monkeypox virus challenge experiments revealed that dual-antigen vaccines prepared via the chemical cross-linking strategy mitigated tissue damage, reduced the virus load, and extended mouse survival, which proved that the chemical cross-linking strategy is valuable for protein-based subunit vaccine development. In consideration of the current threats from the monkeypox virus and potential future emerging pathogens, the chemical cross-linking strategy provide powerful tools.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。