Salubrinal attenuated retinal neovascularization by inhibiting CHOP-HIF1α-VEGF pathways

Salubrinal 通过抑制 CHOP-HIF1α-VEGF 通路减弱视网膜新生血管形成

阅读:5
作者:Yaguang Hu #, Xi Lu #, Yue Xu #, Lin Lu, Shanshan Yu, Qiaochu Cheng, Boyu Yang, Ching-Kit Tsui, Dan Ye, Jingjing Huang, Xiaoling Liang

Abstract

Retinal neovascularization (RNV) related disease is the leading cause of irreversible blindness in the world. The aim of this study is to identify whether salubrinal could attenuate RNV by inhibiting CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP)- hypoxia inducible factors 1α (HIF1α) -vascular endothelial growth factor (VEGF) pathways in both mouse retinal microvascular endothelial cells (mRMECs) and oxygen-induced retinopathy (OIR) mouse model. After being treated with salubrinal (20μmol/L) or CHOP-siRNA, mRMECs were exposed to a hypoxia environment. OIR mice were intraperitoneally injected with salubrinal (0.5 mg/kg/day) from P12 to P17. With salubrinal or CHOP-siRNA treatment, the elevated CHOP protein and mRNA levels in hypoxia-induced mRMECs were significantly decreased. HIF1α-VEGF pathways were activated under hypoxia condition, then HIF1α protein was degraded and VEGF secretion was down-regulated after salubrinal or CHOP-siRNA treatment. In OIR mice, the areas of RNV were markedly decreased with salubrinal treatment. Moreover, elevated expressions of CHOP, HIF1α and VEGF in retinas of OIR mice were all reduced after salubrinal treatment. It suggested that salubrinal attenuated RNV in mRMECs and OIR mice by inhibiting CHOP-HIF1α-VEGF pathways and could be a potential therapeutic target for hypoxia-induced retinal microangiopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。