Voluntary physical activity counteracts Chronic Heart Failure progression affecting both cardiac function and skeletal muscle in the transgenic Tgαq*44 mouse model

自愿体力活动可抵消影响转基因 Tgαq*44 小鼠模型中心脏功能和骨骼肌的慢性心力衰竭进展

阅读:4
作者:Eleonora Bardi, Joanna Majerczak, Jerzy A Zoladz, Urszula Tyrankiewicz, Tomasz Skorka, Stefan Chlopicki, Magdalena Jablonska, Anna Bar, Krzysztof Jasinski, Alessia Buso, Desy Salvadego, Zenon Nieckarz, Bruno Grassi, Roberto Bottinelli, Maria Antonietta Pellegrino1

Abstract

Physical activity is emerging as an alternative nonpharmaceutical strategy to prevent and treat a variety of cardiovascular diseases due to its cardiac and skeletal muscle beneficial effects. Oxidative stress occurs in skeletal muscle of chronic heart failure (CHF) patients with possible impact on muscle function decline. We determined the effect of voluntary-free wheel running (VFWR) in preventing protein damage in Tgαq*44 transgenic mice (Tg) characterized by a delayed CHF progression. In the early (6 months) and transition (12 months) phase of CHF, VFWR increased the daily mean distance covered by Tg mice eliminating the difference between Tg and WT present before exercise at 12 months of age (WT Pre-EX 3.62 ± 1.66 vs. Tg Pre-EX 1.51 ± 1.09 km, P < 0.005; WT Post-EX 5.72 ± 3.42 vs. Tg Post-EX 4.17 ± 1.8 km, P > 0.005). This effect was concomitant with an improvement of in vivo cardiac performance [(Cardiac Index (mL/min/cm2 ): 6 months, untrained-Tg 0.167 ± 0.005 vs. trained-Tg 0.21 ± 0.003, P < 0.005; 12 months, untrained-Tg 0.1 ± 0.009 vs. trained-Tg 0.133 ± 0.005, P < 0.005]. Such effects were associated with a skeletal muscle antioxidant response effective in preventing oxidative damage induced by CHF at the transition phase (untrained-Tg 0.438 ± 0.25 vs. trained-Tg 0.114 ± 0.010, P < 0.05) and with an increased expression of protein control markers (MuRF-1, untrained-Tg 1.12 ± 0.29 vs. trained-Tg 14.14 ± 3.04, P < 0.0001; Atrogin-1, untrained-Tg 0.9 ± 0.38 vs. trained-Tg 7.79 ± 2.03, P < 0.01; Cathepsin L, untrained-Tg 0.91 ± 0.27 vs. trained-Tg 2.14 ± 0.55, P < 0.01). At the end-stage of CHF (14 months), trained-Tg mice showed a worsening of physical performance (decrease in daily activity and weekly distance and time of activity) compared to trained age-matched WT in association with oxidative protein damage of a similar level to that of untrained-Tg mice (untrained-Tg 0.62 ± 0.24 vs. trained-Tg 0.64 ± 0.13, P > 0.05). Prolonged voluntary physical activity performed before the onset of CHF end-stage, appears to be a useful tool to increase cardiac function and to reduce skeletal muscle oxidative damage counteracting physical activity decline.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。