A novel, flexible and automated manufacturing facility for cell-based health care products: Tissue Factory

一种新型、灵活、自动化的细胞保健产品制造设施:组织工厂

阅读:7
作者:Tetsutaro Kikuchi, Masahiro Kino-Oka, Masanori Wada, Toyoshige Kobayashi, Midori Kato, Shizu Takeda, Hirotsugu Kubo, Tetsuya Ogawa, Hironobu Sunayama, Kazuhito Tanimoto, Manabu Mizutani, Tatsuya Shimizu, Teruo Okano

Conclusions

The Tissue Factory, based on the fMP, successfully reproduced three tentative manufacturing processes of CBHPs without any microbial contamination. The platform will improve the manufacturability in terms of lower production cost, improved quality variance and reduced contamination risks. Moreover, its flexibility has the potential to adapt to the modern challenges in the business environment including employment issues, low operational rates, and relocation of facilities. The fMP is expected to become the standard design basis of future manufacturing facilities for CBHPs.

Methods

The Tissue Factory was designed based on the fMP in which several automated modules are combined to perform various culture processes. Each module has a biologically sealed chamber that can be decontaminated by hydrogen peroxide. The asepticity of the processing environment was tested according to a pharmaceutical sterility method. Then, three procedures, production of multi-layered skeletal myoblast sheets, expansion of human articular chondrocytes and passage culture of human induced pluripotent stem cells, were conducted by the system to confirm its ability to manufacture CHBPs.

Results

Falling or adhered microorganisms were not detected either just after decontamination or during the cell culture processes. In cell culture tests, multi-layered skeletal myoblast sheets were successfully manufactured using the method optimized for automatic processing. In addition, human articular chondrocytes and human induced-pluripotent stem cells could be propagated through three passages by the system at a yield comparable to manual operations. Conclusions: The Tissue Factory, based on the fMP, successfully reproduced three tentative manufacturing processes of CBHPs without any microbial contamination. The platform will improve the manufacturability in terms of lower production cost, improved quality variance and reduced contamination risks. Moreover, its flexibility has the potential to adapt to the modern challenges in the business environment including employment issues, low operational rates, and relocation of facilities. The fMP is expected to become the standard design basis of future manufacturing facilities for CBHPs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。