An investigation of the stirring duration effect on synthesized graphene oxide for dye-sensitized solar cells

搅拌时间对染料敏化太阳能电池用氧化石墨烯合成的影响研究

阅读:10
作者:Xin Hui Yau, Foo Wah Low, Cheng Seong Khe, Chin Wei Lai, Sieh Kiong Tiong, Nowshad Amin

Abstract

This study investigates the effects of stirring duration on the synthesis of graphene oxide (GO) using an improved Hummers' method. Various samples are examined under different stirring durations (20, 40, 60, 72, and 80 h). The synthesized GO samples are evaluated through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy. The GO sample with 72 h stirring duration (GO72) has the highest d-spacing in the XRD results, highest atomic percentage of oxygen in EDX (49.57%), highest intensity of oxygen functional group in FTIR spectra, and highest intensity ratio in Raman analysis (ID/IG = 0.756). Results show that GO72 with continuous stirring has the highest degree of oxidation among other samples. Electrochemical impedance spectroscopy analysis shows that GO72-titanium dioxide (TiO2) exhibits smaller charge transfer resistance and higher electron lifetime compared with the TiO2-based photoanode. The GO72 sample incorporating TiO2 nanocomposites achieves 6.25% photoconversion efficiency, indicating an increase of more than twice than that of the mesoporous TiO2 sample. This condition is fully attributed to the efficient absorption rate of nanocomposites and the reduction of the recombination rate of TiO2 by GO in dye-sensitized solar cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。