Engineering Next-Generation BET-Independent MLV Vectors for Safer Gene Therapy

构建新一代 BET 独立 MLV 载体,实现更安全的基因治疗

阅读:8
作者:Sara El Ashkar, Dominique Van Looveren, Franziska Schenk, Lenard S Vranckx, Jonas Demeulemeester, Jan De Rijck, Zeger Debyser, Ute Modlich, Rik Gijsbers

Abstract

Retroviral vectors have shown their curative potential in clinical trials correcting monogenetic disorders. However, therapeutic benefits were compromised due to vector-induced dysregulation of cellular genes and leukemia development in a subset of patients. Bromodomain and extraterminal domain (BET) proteins act as cellular cofactors that tether the murine leukemia virus (MLV) pre-integration complex to host chromatin via interaction with the MLV integrase (IN) and thereby define the typical gammaretroviral integration distribution. We engineered next-generation BET-independent (Bin) MLV vectors to retarget their integration to regions where they are less likely to dysregulate nearby genes. We mutated MLV IN to uncouple BET protein interaction and fused it with chromatin-binding peptides. The addition of the CBX1 chromodomain to MLV INW390A efficiently targeted integration away from gene regulatory elements. The retargeted vector produced at high titers and efficiently transduced CD34+ hematopoietic stem cells, while fewer colonies were detected in a serial colony-forming assay, a surrogate test for genotoxicity. Our findings underscore the potential of the engineered vectors to reduce the risk of insertional mutagenesis without compromising transduction efficiency. Ultimately, combined with other safety features in vector design, next-generation BinMLV vectors can improve the safety of gammaretroviral vectors for gene therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。