Next-Generation Novel Noninvasive Cancer Molecular Diagnostics Platforms Beyond Tissues

超越组织的下一代新型非侵入性癌症分子诊断平台

阅读:8
作者:Xiaoliang Wu, Lin Zhu, Patrick C Ma

Abstract

In recent years, there has been a revolutionary expansion in technologic advances and therapeutic innovations in cancer medicine. Cancer diagnostics has begun to move away from a sole dependence on direct tumor tissue biopsy for cancer detection, diagnosis, and treatment monitoring. The need for improvement in molecular cancer diagnostics has never been more important, with not only the advent of cancer genomics and genomics-guided precision medicine but also the recent arrival of cancer immunotherapies. Owing to the practical limitations and risks associated with tissue-based biopsy diagnostics, novel noninvasive cancer diagnostics platforms have continued to evolve and expand in recent years. Examples of these platforms include the liquid biopsy, which is used to interrogate ctDNA or circulating tumor cells, proteomics, metabolomics, and exosomes; the urine biopsy, which is used to assay ctDNAs; saliva and stool biopsies, which are used for molecular genomics assays; and the breath biopsy, which measures volatile organic compounds. These next-generation noninvasive molecular diagnostics assays beyond tissues fundamentally transform the potential utilities of cancer diagnostics to enable repeat, prospective, and serial longitudinal "biopsies" to monitor disease response resistance and progression on therapies. Moreover, they allow continual interrogation and molecular in-depth analysis of the evolving tumor's pan-canceromics under therapeutic stress. These technological and diagnostic advances have already brought about paradigm-changing next-generation cancer therapeutic strategies to enhance overall treatment efficacies. This article reviews the key noninvasive next-generation molecular diagnostics platforms beyond tissues, with emphasis on clinical utilities and applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。