Osmotic activation of a Ca2+-dependent phospholipase C pathway that regulates ∆N TRPV1-mediated currents in rat supraoptic neurons

渗透激活 Ca2+ 依赖性磷脂酶 C 通路,调节大鼠视上神经元中 ∆N TRPV1 介导的电流

阅读:6
作者:Vimal Bansal, Thomas E Fisher

Abstract

The magnocellular neurosecretory cells (MNCs) of the hypothalamus regulate body fluid balance by releasing the hormones vasopressin (VP) and oxytocin (OT) in an osmolality-dependent manner. Elevations of external osmolality increase MNC firing and hormone release. MNC osmosensitivity is largely due to activation of a mechanosensitive non-selective cation current that responds to osmotically-evoked changes in MNC volume and is mediated by an N-terminal variant of the TRPV1 channel (∆N TRPV1). We report a novel mechanism by which increases in osmolality may modulate ∆N TRPV1-mediated currents and thus influence MNC electrical behaviour. We showed previously that acute elevations of external osmolality activate the enzyme phospholipase C (PLC) in isolated MNCs. We now show that the osmotic activation of PLC has a time course and dose-dependence that is consistent with a role in MNC osmosensitivity and that it contributes to the osmotically-evoked increase in non-selective cation current in MNCs through a protein kinase C-dependent pathway. We furthermore show that the mechanism of osmotic activation of PLC requires an increase in internal Ca2+ that depends on influx through L-type Ca2+ channels. Our data therefore suggest that MNCs possess an osmotically-activated Ca2+-dependent PLC that contributes to the osmotic activation of ∆N TRPV1 and may therefore be important in MNC osmosensitivity and in central osmoregulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。