RrMYB5- and RrMYB10-regulated flavonoid biosynthesis plays a pivotal role in feedback loop responding to wounding and oxidation in Rosa rugosa

RrMYB5 和 RrMYB10 调控的黄酮类化合物生物合成在玫瑰果响应损伤和氧化的反馈回路中起关键作用

阅读:10
作者:Yuxiao Shen, Tingting Sun, Qi Pan, Nachaisin Anupol, Hai Chen, Jiewei Shi, Fang Liu, Duanmu Deqiang, Changquan Wang, Jian Zhao, Shuhua Yang, Caiyun Wang, Jihong Liu, Manzhu Bao, Guogui Ning

Abstract

Flavonoids play critical roles in plant responses to various stresses. Few studies have been reported on what the mechanism of activating flavonoid biosynthesis in plant responses to wounding and oxidation is. In this study, flavonoid metabolites and many MYB transcript factors from Rosa rugosa were verified to be induced by wounding and oxidation. RrMYB5 and RrMYB10, which belong to PA1- and TT2-type MYB TFs, respectively, showed extremely high induction. Overexpression of RrMYB5 and RrMYB10 resulted in an increased accumulation of proanthocyanidins in R. rugosa and tobacco by promoting the expression of flavonoid structural genes. Transcriptomic analysis of the transgenic plants showed that most genes, involved in wounding and oxidation response and ABA signalling modulation, were up-regulated by the overexpression of RrMYB10, which was very much similar to that observed in RrANR and RrDFR overexpression transgenics. RrMYB5 and RrMYB10 physically interacted and mutually activated each other's expressions. They solely or synergistically activated the different sets of flavonoid pathway genes in a bHLH TF EGL3-independent manner. Eventually, the accumulation of proanthocyanidins enhanced plant tolerance to wounding and oxidative stresses. Therefore, RrMYB5 and RrMYB10 regulated flavonoid synthesis in feedback loop responding to wounding and oxidation in R. rugosa. Our study provides new insights into the regulatory mechanisms of flavonoid biosynthesis by MYB TFs and their essential physiological functions in plant responses to wounding and oxidative stresses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。