Simultaneous suppression of lignin, tricin and wall-bound phenolic biosynthesis via the expression of monolignol 4-O-methyltransferases in rice

通过水稻中单木质素4-O-甲基转移酶的表达同时抑制木质素、麦黄素和壁结合酚的生物合成

阅读:6
作者:Nidhi Dwivedi, Senri Yamamoto, Yunjun Zhao #, Guichuan Hou #, Forrest Bowling, Yuki Tobimatsu, Chang-Jun Liu

Abstract

Grass lignocelluloses feature complex compositions and structures. In addition to the presence of conventional lignin units from monolignols, acylated monolignols and flavonoid tricin also incorporate into lignin polymer; moreover, hydroxycinnamates, particularly ferulate, cross-link arabinoxylan chains with each other and/or with lignin polymers. These structural complexities make grass lignocellulosics difficult to optimize for effective agro-industrial applications. In the present study, we assess the applications of two engineered monolignol 4-O-methyltransferases (MOMTs) in modifying rice lignocellulosic properties. Two MOMTs confer regiospecific para-methylation of monolignols but with different catalytic preferences. The expression of MOMTs in rice resulted in differential but drastic suppression of lignin deposition, showing more than 50% decrease in guaiacyl lignin and up to an 90% reduction in syringyl lignin in transgenic lines. Moreover, the levels of arabinoxylan-bound ferulate were reduced by up to 50%, and the levels of tricin in lignin fraction were also substantially reduced. Concomitantly, up to 11 μmol/g of the methanol-extractable 4-O-methylated ferulic acid and 5-7 μmol/g 4-O-methylated sinapic acid were accumulated in MOMT transgenic lines. Both MOMTs in vitro displayed discernible substrate promiscuity towards a range of phenolics in addition to the dominant substrate monolignols, which partially explains their broad effects on grass phenolic biosynthesis. The cell wall structural and compositional changes resulted in up to 30% increase in saccharification yield of the de-starched rice straw biomass after diluted acid-pretreatment. These results demonstrate an effective strategy to tailor complex grass cell walls to generate improved cellulosic feedstocks for the fermentable sugar-based production of biofuel and bio-chemicals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。