CRISPR/Cas9-mediated simultaneous mutation of three salicylic acid 5-hydroxylase (OsS5H) genes confers broad-spectrum disease resistance in rice

CRISPR/Cas9 介导的三个水杨酸 5-羟化酶 (OsS5H) 基因同时突变使水稻具有广谱抗病性

阅读:5
作者:Xiong Liu #, Yan Yu #, Wei Yao, Zhongliang Yin, Yubo Wang, Zijian Huang, Jie-Qiang Zhou, Jinling Liu, Xuedan Lu, Feng Wang, Guilian Zhang, Guihua Chen, Yunhua Xiao, Huabing Deng, Wenbang Tang

Abstract

Salicylic acid (SA) is an essential plant hormone that plays critical roles in basal defence and amplification of local immune responses and establishes resistance against various pathogens. However, the comprehensive knowledge of the salicylic acid 5-hydroxylase (S5H) in rice-pathogen interaction is still elusive. Here, we reported that three OsS5H homologues displayed salicylic acid 5-hydroxylase activity, converting SA into 2,5-dihydroxybenzoic acid (2,5-DHBA). OsS5H1, OsS5H2, and OsS5H3 were preferentially expressed in rice leaves at heading stage and responded quickly to exogenous SA treatment. We found that bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) strongly induced the expression of OsS5H1, OsS5H2, and OsS5H3. Rice plants overexpressing OsS5H1, OsS5H2, and OsS5H3 showed significantly decreased SA contents and increased 2,5-DHBA levels, and were more susceptible to bacterial blight and rice blast. A simple single guide RNA (sgRNA) was designed to create oss5h1oss5h2oss5h3 triple mutants through CRISPR/Cas9-mediated gene mutagenesis. The oss5h1oss5h2oss5h3 exhibited stronger resistance to Xoo than single oss5h mutants. And oss5h1oss5h2oss5h3 plants displayed enhanced rice blast resistance. The conferred pathogen resistance in oss5h1oss5h2oss5h3 was attributed to the significantly upregulation of OsWRKY45 and pathogenesis-related (PR) genes. Besides, flg22-induced reactive oxygen species (ROS) burst was enhanced in oss5h1oss5h2oss5h3. Collectively, our study provides a fast and effective approach to generate rice varieties with broad-spectrum disease resistance through OsS5H gene editing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。