Copy number variation in Y chromosome multicopy genes is linked to a paternal parent-of-origin effect on CNS autoimmune disease in female offspring

染色体多拷贝基因的拷贝数变异与父系亲本对女性后代中枢神经系统自身免疫性疾病的影响有关

阅读:9
作者:Laure K Case, Emma H Wall, Erin E Osmanski, Julie A Dragon, Naresha Saligrama, James F Zachary, Bernardo Lemos, Elizabeth P Blankenhorn, Cory Teuscher1

Background

The prevalence of some autoimmune diseases is greater in females compared with males, although disease severity is often greater in males. The reason for this sexual dimorphism is unknown, but it may reflect negative selection of Y chromosome-bearing sperm during spermatogenesis or male fetuses early in the course of conception/pregnancy. Previously, we showed that the sexual dimorphism in experimental autoimmune encephalomyelitis (EAE) is associated with copy number variation (CNV) in Y chromosome multicopy genes. Here, we test the hypothesis that CNV in Y chromosome multicopy genes influences the paternal parent-of-origin effect on EAE susceptibility in female mice.

Conclusions

These findings provide evidence for a mechanism at the level of the male gamete that contributes to the sexual dimorphism in EAE and paternal parent-of-origin effects in female mice, raising the possibility that a similar mechanism may contribute to the sexual dimorphism in multiple sclerosis.

Results

We show that C57BL/6 J consomic strains of mice possessing an identical X chromosome and CNV in Y chromosome multicopy genes exhibit sperm head abnormalities and female-biased sex ratio. This is consistent with X-Y intragenomic conflict arising from an imbalance in CNV between homologous X:Y chromosome multicopy genes. These males also display paternal transmission of EAE to female offspring and differential loading of microRNAs within the sperm nucleus. Furthermore, in humans, families of probands with multiple sclerosis similarly exhibit a female-biased sex ratio, whereas families of probands affected with non-sexually dimorphic autoimmune diseases exhibit unbiased sex ratios. Conclusions: These findings provide evidence for a mechanism at the level of the male gamete that contributes to the sexual dimorphism in EAE and paternal parent-of-origin effects in female mice, raising the possibility that a similar mechanism may contribute to the sexual dimorphism in multiple sclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。