An iterative gene-editing strategy broadens eIF4E1 genetic diversity in Solanum lycopersicum and generates resistance to multiple potyvirus isolates

迭代基因编辑策略拓宽了番茄中 eIF4E1 的遗传多样性,并产生了对多种马铃薯 Y 病毒分离株的抗性

阅读:6
作者:Kyoka Kuroiwa, Benoit Danilo, Laura Perrot, Christina Thenault, Florian Veillet, Fabien Delacote, Philippe Duchateau, Fabien Nogué, Marianne Mazier, Jean-Luc Gallois

Abstract

Resistance to potyviruses in plants has been largely provided by the selection of natural variant alleles of eukaryotic translation initiation factors (eIF) 4E in many crops. However, the sources of such variability for breeding can be limited for certain crop species, while new virus isolates continue to emerge. Different methods of mutagenesis have been applied to inactivate the eIF4E genes to generate virus resistance, but with limited success due to the physiological importance of translation factors and their redundancy. Here, we employed genome editing approaches at the base level to induce non-synonymous mutations in the eIF4E1 gene and create genetic diversity in cherry tomato (Solanum lycopersicum var. cerasiforme). We sequentially edited the genomic sequences coding for two regions of eIF4E1 protein, located around the cap-binding pocket and known to be important for susceptibility to potyviruses. We show that the editing of only one of the two regions, by gene knock-in and base editing, respectively, is not sufficient to provide resistance. However, combining amino acid mutations in both regions resulted in resistance to multiple potyviruses without affecting the functionality in translation initiation. Meanwhile, we report that extensive base editing in exonic region can alter RNA splicing pattern, resulting in gene knockout. Altogether our work demonstrates that precision editing allows to design plant factors based on the knowledge on evolutionarily selected alleles and enlarge the gene pool to potentially provide advantageous phenotypes such as pathogen resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。