Genome-wide association mapping for component traits of drought tolerance in dry beans (Phaseolus vulgaris L.)

干豆(Phaseolus vulgaris L.)抗旱性组成性状的全基因组关联图谱

阅读:7
作者:Bruce Mutari, Julia Sibiya, Admire Shayanowako, Charity Chidzanga, Prince M Matova, Edmore Gasura

Abstract

Understanding the genetic basis of traits of economic importance under drought stressed and well-watered conditions is important in enhancing genetic gains in dry beans (Phaseolus vulgaris L.). This research aims to: (i) identify markers associated with agronomic and physiological traits for drought tolerance and (ii) identify drought-related putative candidate genes within the mapped genomic regions. An andean and middle-american diversity panel (AMDP) comprising of 185 genotypes was screened in the field under drought stressed and well-watered conditions for two successive seasons. Agronomic and physiological traits, viz., days to 50% flowering (DFW), plant height (PH), days to physiological maturity (DPM), grain yield (GYD), 100-seed weight (SW), leaf temperature (LT), leaf chlorophyll content (LCC) and stomatal conductance (SC) were phenotyped. Principal component and association analysis were conducted using the filtered 9370 Diversity Arrays Technology sequencing (DArTseq) markers. The mean PH, GYD, SW, DPM, LCC and SC of the panel was reduced by 12.1, 29.6, 10.3, 12.6, 28.5 and 62.0%, respectively under drought stressed conditions. Population structure analysis revealed two sub-populations, which corresponded to the andean and middle-american gene pools. Markers explained 0.08-0.10, 0.22-0.23, 0.29-0.32, 0.43-0.44, 0.65-0.66 and 0.69-0.70 of the total phenotypic variability (R2) for SC, LT, PH, GYD, SW and DFW, respectively under drought stressed conditions. For well-watered conditions, R2 varied from 0.08 (LT) to 0.70 (DPM). Overall, 68 significant (p < 10-03) marker-trait associations (MTAs) and 22 putative candidate genes were identified across drought stressed and well-watered conditions. Most of the identified genes had known biological functions related to regulating the response to drought stress. The findings provide new insights into the genetic architecture of drought stress tolerance in common bean. The findings also provide potential candidate SNPs and putative genes that can be utilized in gene discovery and marker-assisted breeding for drought tolerance after validation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。