Precise manipulation of bacterial chromosomes by conjugative assembly genome engineering

通过接合组装基因组工程精确操作细菌染色体

阅读:4
作者:Natalie J Ma, Daniel W Moonan, Farren J Isaacs

Abstract

Conjugative assembly genome engineering (CAGE) is a precise method of genome assembly using conjugation to hierarchically combine distinct genotypes from multiple Escherichia coli strains into a single chimeric genome. CAGE permits large-scale transfer of specified genomic regions between strains without constraints imposed by in vitro manipulations. Strains are assembled in a pairwise manner by establishing a donor strain that harbors conjugation machinery and a recipient strain that receives DNA from the donor. Within strain pairs, targeted placement of a conjugal origin of transfer and selectable markers in donor and recipient genomes enables the controlled transfer and selection of desired donor-recipient chimeric genomes. By design, selectable markers act as genomic anchor points, and they are recycled in subsequent rounds of hierarchical genome transfer. A single round of CAGE can be completed in a week, thus enabling four rounds (hierarchical assembly of 16 strains) of CAGE to be completed in roughly 1 month.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。