The extent of multiallelic, co-editing of LIGULELESS1 in highly polyploid sugarcane tunes leaf inclination angle and enables selection of the ideotype for biomass yield

高度多倍体甘蔗中 LIGULELESS1 的多等位基因共同编辑的程度可调节叶片的倾斜角度,从而能够选择理想型以获得生物量产量

阅读:6
作者:Eleanor J Brant, Ayman Eid, Baskaran Kannan, Mehmet Cengiz Baloglu, Fredy Altpeter

Abstract

Sugarcane (Saccharum spp. hybrid) is a prime feedstock for commercial production of biofuel and table sugar. Optimizing canopy architecture for improved light capture has great potential for elevating biomass yield. LIGULELESS1 (LG1) is involved in leaf ligule and auricle development in grasses. Here, we report CRISPR/Cas9-mediated co-mutagenesis of up to 40 copies/alleles of the putative LG1 in highly polyploid sugarcane (2n = 100-120, x = 10-12). Next generation sequencing revealed co-editing frequencies of 7.4%-100% of the LG1 reads in 16 of the 78 transgenic lines. LG1 mutations resulted in a tuneable leaf angle phenotype that became more upright as co-editing frequency increased. Three lines with loss of function frequencies of ~12%, ~53% and ~95% of lg1 were selected following a randomized greenhouse trial and grown in replicated, multi-row field plots. The co-edited LG1 mutations were stably maintained in vegetative progenies and the extent of co-editing remained constant in field tested lines L26 and L35. Next generation sequencing confirmed the absence of potential off targets. The leaf inclination angle corresponded to light transmission into the canopy and tiller number. Line L35 displaying loss of function in ~12% of the lg1 NGS reads exhibited an 18% increase in dry biomass yield supported by a 56% decrease in leaf inclination angle, a 31% increase in tiller number, and a 25% increase in internode number. The scalable co-editing of LG1 in highly polyploid sugarcane allows fine-tuning of leaf inclination angle, enabling the selection of the ideotype for biomass yield.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。