DENA: training an authentic neural network model using Nanopore sequencing data of Arabidopsis transcripts for detection and quantification of N6-methyladenosine on RNA

DENA:使用拟南芥转录本的纳米孔测序数据训练真实的神经网络模型,以检测和定量 RNA 上的 N6-甲基腺苷

阅读:7
作者:Hang Qin #, Liang Ou #, Jian Gao, Longxian Chen, Jia-Wei Wang, Pei Hao, Xuan Li0

Abstract

Models developed using Nanopore direct RNA sequencing data from in vitro synthetic RNA with all adenosine replaced by N6-methyladenosine (m6A) are likely distorted due to superimposed signals from saturated m6A residues. Here, we develop a neural network, DENA, for m6A quantification using the sequencing data of in vivo transcripts from Arabidopsis. DENA identifies 90% of miCLIP-detected m6A sites in Arabidopsis and obtains modification rates in human consistent to those found by SCARLET, demonstrating its robustness across species. We sequence the transcriptome of two additional m6A-deficient Arabidopsis, mtb and fip37-4, using Nanopore and evaluate their single-nucleotide m6A profiles using DENA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。