GmPLP1 negatively regulates soybean resistance to high light stress by modulating photosynthetic capacity and reactive oxygen species accumulation in a blue light-dependent manner

GmPLP1 通过以蓝光依赖的方式调节光合能力和活性氧积累,对大豆抗高光胁迫产生负向调控作用

阅读:8
作者:Yanzheng Zhang, Jiqiang Zheng, Yuhang Zhan, Zhenhai Yu, Shuhan Liu, Xiangpeng Lu, Yue Li, Zeyang Li, Xiaoyue Liang, Haibin Li, Yuan Feng, Weili Teng, Wenbin Li, Yingpeng Han, Xue Zhao, Yongguang Li

Abstract

High light stress is an important factor limiting crop yield. Light receptors play an important role in the response to high light stress, but their mechanisms are still poorly understood. Here, we found that the abundance of GmPLP1, a positive blue light receptor protein, was significantly inhibited by high light stress and mainly responded to high blue light. GmPLP1 RNA-interference soybean lines exhibited higher light energy utilization ability and less light damage and reactive oxygen species (ROS) accumulation in leaves under high light stress, while the phenotype of GmPLP1:GmPLP1-Flag overexpression soybean showed the opposite characteristics. Then, we identified a protein-protein interaction between GmPLP1 and GmVTC2, and the intensity of this interaction was primarily affected by sensing the intensity of blue light. More importantly, overexpression of GmVTC2b improved soybean tolerance to high light stress by enhancing the ROS scavenging capability through increasing the biosynthesis of ascorbic acid. This regulation was significantly enhanced after interfering with a GmPLP1-interference fragment in GmVTC2b-ox soybean leaves, but was weakened when GmPLP1 was transiently overexpressed. These findings demonstrate that GmPLP1 regulates the photosynthetic capacity and ROS accumulation of soybean to adapt to changes in light intensity by sensing blue light. In summary, this study discovered a new mechanism through which GmPLP1 participates in high light stress in soybean, which has great significance for improving soybean yield and the adaptability of soybean to high light.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。