In-depth characterization of Trichoderma reesei cellobiohydrolase TrCel7A produced in Nicotiana benthamiana reveals limitations of cellulase production in plants by host-specific post-translational modifications

对本氏烟中产生的里氏木霉纤维二糖水解酶 TrCel7A 进行深入表征,揭示了宿主特异性翻译后修饰对植物中纤维素酶产生的限制

阅读:12
作者:André van Eerde, Anikó Várnai, John Kristian Jameson, Lisa Paruch, Anders Moen, Jan Haug Anonsen, Piotr Chylenski, Hege Saervold Steen, Inger Heldal, Ralph Bock, Vincent G H Eijsink, Jihong Liu-Clarke

Abstract

Sustainable production of biofuels from lignocellulose feedstocks depends on cheap enzymes for degradation of such biomass. Plants offer a safe and cost-effective production platform for biopharmaceuticals, vaccines and industrial enzymes boosting biomass conversion to biofuels. Production of intact and functional protein is a prerequisite for large-scale protein production, and extensive host-specific post-translational modifications (PTMs) often affect the catalytic properties and stability of recombinant enzymes. Here we investigated the impact of plant PTMs on enzyme performance and stability of the major cellobiohydrolase TrCel7A from Trichoderma reesei, an industrially relevant enzyme. TrCel7A was produced in Nicotiana benthamiana using a vacuum-based transient expression technology, and this recombinant enzyme (TrCel7Arec ) was compared with the native fungal enzyme (TrCel7Anat ) in terms of PTMs and catalytic activity on commercial and industrial substrates. We show that the N-terminal glutamate of TrCel7Arec was correctly processed by N. benthamiana to a pyroglutamate, critical for protein structure, while the linker region of TrCel7Arec was vulnerable to proteolytic digestion during protein production due to the absence of O-mannosylation in the plant host as compared with the native protein. In general, the purified full-length TrCel7Arec had 25% lower catalytic activity than TrCel7Anat and impaired substrate-binding properties, which can be attributed to larger N-glycans and lack of O-glycans in TrCel7Arec . All in all, our study reveals that the glycosylation machinery of N. benthamiana needs tailoring to optimize the production of efficient cellulases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。