Mimicking the Graded Wavy Structure of the Anterior Cruciate Ligament

模仿前交叉韧带的分级波浪结构

阅读:8
作者:Sandra Camarero-Espinosa, Huipin Yuan, Pieter J Emans, Lorenzo Moroni

Abstract

Anterior cruciate ligament (ACL) is the connective tissue providing mechanical stability to the knee joint. ACL reconstruction upon rupture remains a clinical challenge due to the high mechanical properties required for proper functioning. ACL owes its outstanding mechanical properties to the arrangement of the extracellular matrix (ECM) and to the cells with distinct phenotypes present along the length of the tissue. Tissue regeneration appears as an ideal alternative. In this study, a tri-phasic fibrous scaffold that mimics the structure of collagen in the native ECM is developed, presenting a wavy intermediate zone and two aligned uncurled extremes. The mechanical properties of the wavy scaffolds present a toe region, characteristic of the native ACL, and an extended yield and ultimate strain compared to aligned scaffolds. The presentation of a wavy fiber arrangement affects cell organization and the deposition of a specific ECM characteristic of fibrocartilage. Cells cultured in wavy scaffolds grow in aggregates, deposit an abundant ECM rich in fibronectin and collagen II, and express higher amounts of collagen II, X, and tenomodulin as compared to aligned scaffolds. In vivo implantation in rabbits shows a high cellular infiltration and the formation of an oriented ECM compared to aligned scaffolds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。