Glucocorticoid receptor activation impairs hippocampal plasticity by suppressing BDNF expression in obese mice

糖皮质激素受体激活通过抑制肥胖小鼠的 BDNF 表达损害海马可塑性

阅读:8
作者:Marlena Wosiski-Kuhn, Joanna R Erion, Elise P Gomez-Sanchez, Celso E Gomez-Sanchez, Alexis M Stranahan

Abstract

Diabetes and obesity are associated with perturbation of adrenal steroid hormones and impairment of hippocampal plasticity, but the question of whether these conditions recruit glucocorticoid-mediated molecular cascades that are comparable to other stressors has yet to be fully addressed. We have used a genetic mouse model of obesity and diabetes with chronically elevated glucocorticoids to determine the mechanism for glucocorticoid-induced deficits in hippocampal synaptic function. Pharmacological inhibition of adrenal steroidogenesis attenuates structural and functional impairments by regulating plasticity among dendritic spines in the hippocampus of leptin receptor deficient (db/db) mice. Synaptic deficits evoked by exposure to elevated corticosterone levels in db/db mice are attributable to glucocorticoid receptor-mediated transrepression of AP-1 actions at BDNF promoters I and IV. db/db mice exhibit corticosterone-mediated reductions in brain-derived neurotrophic factor (BDNF), and a change in the ratio of TrkB to P75NTR that silences the functional response to BDNF stimulation. Lentiviral suppression of glucocorticoid receptor expression rescues behavioral and synaptic function in db/db mice, and also reinstates BDNF expression, underscoring the relevance of molecular mechanisms previously demonstrated after psychological stress to the functional alterations observed in obesity and diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。