Dynamic Characterisation of Fibre-Optic Temperature Sensors for Physiological Monitoring

用于生理监测的光纤温度传感器的动态特性

阅读:7
作者:Joanna M Coote, Ryo Torii, Adrien E Desjardins

Abstract

Fast, miniature temperature sensors are required for various biomedical applications. Fibre-optics are particularly suited to minimally invasive procedures, and many types of fibre-optic temperature sensors have been demonstrated. In applications where rapidly varying temperatures are present, a fast and well-known response time is important; however, in many cases, the dynamic behaviour of the sensor is not well-known. In this article, we investigate the dynamic response of a polymer-based interferometric temperature sensor, using both an experimental technique employing optical heating with a pulsed laser, and a computational heat transfer model based on the finite element method. Our results show that the sensor has a time constant on the order of milliseconds and a -6 dB bandwidth of up to 178 Hz, indicating its suitability for applications such as flow measurement by thermal techniques, photothermal spectroscopy, and monitoring of thermal treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。