Novel Mechanism for Memantine in Attenuating Diabetic Neuropathic Pain in Mice via Downregulating the Spinal HMGB1/TRL4/NF-kB Inflammatory Axis

美金刚通过下调脊髓 HMGB1/TRL4/NF-kB 炎症轴减轻小鼠糖尿病神经性疼痛的新机制

阅读:5
作者:Suliman Y Alomar, Rehab E Abo El Gheit, Eman T Enan, Khaled S El-Bayoumi, Mohamed Z Shoaeir, Amany Y Elkazaz, Sultan S Al Thagfan, Sawsan A Zaitone, Rehab M El-Sayed1

Abstract

Diabetic neuropathic pain (DNP) is a common diabetic complication that currently lacks an efficient therapy. The aim of the current work was to uncover the anti-allodynic and neuroprotective effects of memantine in a model of mouse diabetic neuropathy and its ameliorative effect on the high-mobility group box-1 (HMGB1)/toll-like receptor 4 (TLR4)/nuclear factor-k B (NF-kB) inflammatory axis. Diabetes was prompted by an alloxan injection (180 mg/kg) to albino mice. On the ninth week after diabetes induction, DNP was confirmed. Diabetic mice were randomly allocated to two groups (six mice each); a diabetes mellitus (DM) group and DM+memantine group (10 mg/kg, daily) for five weeks. DNP-related behaviors were assessed in terms of thermal hyperalgesia and mechanical allodynia by hot-plate and von Frey filaments. Enzyme-linked immunosorbent assay (ELISA) kits were used to measure the spinal glutamate, interleukin-1 beta (IL-1β), and tumor necrosis factor-α (TNF-α). The spinal levels of N-methyl-D-aspartate type 1 receptor (NMDAR1), HMGB1, TLR4, and phosphorylated NF-kB were assessed using Western blotting. Histopathological investigation of the spinal cord and sciatic nerves, together with the spinal cord ultrastructure, was employed for assessment of the neuroprotective effect. Memantine alleviated pain indicators in diabetic mice and suppressed excessive NMDAR1 activation, glutamate, and pro-inflammatory cytokine release in the spinal cord. The current study validated the ability of memantine to combat the HMGB1/TLR4/NF-kB axis and modulate overactive glutamate spinal transmission, corroborating memantine as an appealing therapeutic target in DNP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。