Differential Expressions of circRNAs and Regulatory Mechanisms of ceRNA Network in Liver of Wilson's Disease TX Mice

威尔逊病TX小鼠肝脏中circRNA的差异表达及ceRNA网络的调控机制

阅读:8
作者:Hong Chen #, Xie Wang #, Nian Peng, Yue Pu, Hao Ye, Yu Gui, Rui Zhang, Juan Zhang

Background

Wilson's disease (WD) is a hereditary disorder characterized by an abnormality in copper metabolism. Liver fibrosis, and potentially cirrhosis, induced by copper accumulation are critical factors in the pathogenesis of WD. CircRNAs exhibit high stability and play crucial roles in numerous biological processes.

Conclusion

The findings provide a significant molecular biology foundation for understanding the pathogenesis of liver fibrosis in WD and offer new insights for exploring potential diagnostic and therapeutic targets.

Methods

RNA-seq technology was employed to conduct transcriptome sequencing of the liver from 12 homozygous (TX) mice in the model group (NL group) and 12 wild-type (WT) mice in the control group (N group). Differentially expressed circular RNAs (DE-circRNAs) were identified, and following GO and KEGG analysis, a competitive endogenous RNA (ceRNA) regulatory network was constructed. The identified DE-circRNAs were then randomly validated using RT-qPCR.

Results

Utilizing RNA sequencing (RNA-seq), the study identified 54 DE-circRNAs in TX-j mice with WD-induced liver fibrosis model, among which 19 were up-regulated and 35 were down-regulated. GO analysis revealed multiple biological processes, including single-organism process, cellular process, and metabolic process. Further pathway identification using KEGG implicated several pathways, including the HIF-1, PI3K-Akt, AMPK, FoxO, signaling pathway regulating pluripotency of stem cells, phospholipase D, mTOR, Ras, cGMP-PKG, and MAPK signaling pathway, among others. A ceRNA regulatory network was constructed with 20 circRNAs, 7 miRNAs, and 75 mRNAs as crucial core components. Additionally, RT-qPCR validation was performed on randomly selected DE-circRNAs, yielding consistent results (P<0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。