Identifying the In Vivo Cellular Correlates of Antipsychotic Drugs

识别抗精神病药物的体内细胞相关性

阅读:9
作者:Radhika S Joshi, Mitradas M Panicker

Abstract

GPCRs such as 5-HT2A and D2 are implicated in the therapeutic and the side effects of antipsychotics. However, the pattern of brain activity that leads to the behavioral effects of antipsychotics is poorly understood. To address this question, we used the transgenic 'FosTRAP' mice (Mus musculus), where a fluorescent reporter marks the cells responsive to the stimulus of interest. Here, the stimulus was an administration of various antipsychotic drugs. In case of typical antipsychotics such as Haloperidol, the c-fos active cells were predominantly found in the striatum, whereas in case of the atypical antipsychotics (Clozapine and Olanzapine), c-fos-induced cells were more numerous in the cortical regions, e.g., orbital cortex, piriform cortex. Curiously, we also observed ependymal cells to be a novel cellular target of atypical antipsychotics. 5-HT2A is considered to be a major target for atypical antipsychotics. Therefore, we bred 'FosTRAP' mice with 5-HT2A knock-out (KO) mice and tested their response to the prototype of atypical antipsychotics, Clozapine. Interestingly, the absence of 5-HT2A did not significantly affect the number of c-fos-induced cells in the cortical regions. However, the ependymal cells showed a dramatically reduced response to Clozapine in the absence of 5-HT2A. In summary, the TRAP system has allowed us to identify various region-specific activity induced by antipsychotics and novel cellular targets of the antipsychotics. These results serve as a "proof of principle" study that can be extended to explore the biochemical and physiological changes brought about by antipsychotics and specifically identify antipsychotic-responsive cells in the live tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。