Hotspots of mammalian chromosomal evolution

哺乳动物染色体进化的热点

阅读:11
作者:Jeffrey A Bailey, Robert Baertsch, W James Kent, David Haussler, Evan E Eichler

Background

Chromosomal evolution is thought to occur through a random process of breakage and rearrangement that leads to karyotype differences and disruption of gene order. With the availability of both the human and mouse genomic sequences, detailed analysis of the sequence properties underlying these breakpoints is now possible.

Conclusion

These results indicate that segmental duplications are associated with syntenic rearrangements, even when pericentromeric and subtelomeric regions are excluded. However, segmental duplications are not necessarily the cause of the rearrangements. Rather, our analysis supports a nonrandom model of chromosomal evolution that implicates specific regions within the mammalian genome as having been predisposed to both recurrent small-scale duplication and large-scale evolutionary rearrangements.

Results

We report an abundance of primate-specific segmental duplications at the breakpoints of syntenic blocks in the human genome. Using conservative criteria, we find that 25% (122/461) of all breakpoints contain > or = 10 kb of duplicated sequence. This association is highly significant (p < 0.0001) when compared to a simulated random-breakage model. The significance is robust under a variety of parameters, multiple sets of conserved synteny data, and for orthologous breakpoints between and within chromosomes. A comparison of mouse lineage-specific breakpoints since the divergence of rat and mouse showed a similar association with regions associated with segmental duplications in the primate genome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。