Soy protein isolate-carboxymethyl cellulose conjugates with pH sensitivity for sustained avermectin release

大豆分离蛋白-羧甲基纤维素复合物具有 pH 敏感性,可持续释放阿维菌素

阅读:4
作者:Long Chen, Hongjun Zhou, Li Hao, Huayao Chen, Xinhua Zhou

Abstract

Carboxymethyl cellulose (CMC) was grafted onto the surface of soy protein isolate (SPI) to obtain soy protein isolate-carboxymethyl cellulose conjugate (SPC). Avermectin (AVM) was hydrophobically encapsulated as a model drug to obtain SPC@AVM. The reaction between SPI and CMC was confirmed by infrared spectroscopy, thermal analysis and SDS-PAGE electrophoresis. The results of scanning electron microscopy showed that the average particle size of the drug-loaded microspheres was 129 nm and the shape of microspheres changed from block to spherical after the addition of AVM. After encapsulation of AVM, the absolute value of zeta potential was greater than 15 mV, which indicated better stability. Compared to AVM solution, SPC@AVM showed more wettability on the leaf surface and the contact angle on the leaves decreased from 71.64° to 57.33°. The maximum liquid holding capacity increased by 41.41%, from 8.85 to 12.52 mg cm-2, which effectively reduced leaf loss. SPC@AVM also prevented UV photolysis, wherein the half-life was extended from 18 to 68 min when exposed to UV light. Moreover, toxicity tests showed that the encapsulation of AVM was beneficial to retain the insecticidal effect of AVM in the presence of ultraviolet light. The release rate of AVM showed pH responsiveness and the release rate under neutral conditions was faster than acidic and alkaline conditions. Moreover, the process conformed to the Weibull model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。