Femtosecond dynamics coupled to chemical barrier crossing in a Born-Oppenheimer enzyme

飞秒动力学与 Born-Oppenheimer 酶中化学屏障跨越的耦合

阅读:6
作者:Rafael G Silva, Andrew S Murkin, Vern L Schramm

Abstract

Contributions of fast (femtosecond) dynamic motion to barrier crossing at enzyme catalytic sites is in dispute. Human purine nucleoside phosphorylase (PNP) forms a ribocation-like transition state in the phosphorolysis of purine nucleosides and fast protein motions have been proposed to participate in barrier crossing. In the present study, (13)C-, (15)N-, (2)H-labeled human PNP (heavy PNP) was expressed, purified to homogeneity, and shown to exhibit a 9.9% increase in molecular mass relative to its unlabeled counterpart (light PNP). Kinetic isotope effects and steady-state kinetic parameters were indistinguishable for both enzymes, indicating that transition-state structure, equilibrium binding steps, and the rate of product release were not affected by increased protein mass. Single-turnover rate constants were slowed for heavy PNP, demonstrating reduced probability of chemical barrier crossing from enzyme-bound substrates to enzyme-bound products. In a second, independent method to probe barrier crossing, heavy PNP exhibited decreased forward commitment factors, also revealing mass-dependent decreased probability for barrier crossing. Increased atomic mass in human PNP alters bond vibrational modes on the femtosecond time scale and reduces on-enzyme chemical barrier crossing. This study demonstrates coupling of enzymatic bond vibrations on the femtosecond time scale to barrier crossing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。