Effects of Peripheral Immune Challenge on In Vivo Firing of Basolateral Amygdala Neurons in Adult Male Rats

外周免疫刺激对成年雄性大鼠基底外侧杏仁核神经元体内放电的影响

阅读:7
作者:Soumyabrata Munshi, J Amiel Rosenkranz

Abstract

Peripheral inflammation often causes changes in mood and emergence of depressive behavior, and is characterized by a group of physical manifestations including lethargy, malaise, listlessness, decreased appetite, anhedonia, and fever. These behavioral changes are induced at the molecular level by pro-inflammatory cytokines like interleukin (IL)-1β, IL-6 and TNF-α. The basolateral amygdala (BLA) is a key brain region involved in mood and may mediate some of the behavioral effects of inflammation. However, it is unknown whether peripheral inflammatory state affects the activity of BLA neurons. To test this, adult male Sprague-Dawley rats were treated with IL-1β (1 μg, intraperitoneal (i.p.)), and behavioral and electrophysiological measures were obtained. IL-1β reduced locomotion in the open-field test and also reduced home-cage mobility, consistent with features of sickness-like behavior. Using in vivo single-unit extracellular electrophysiological recordings from anesthetized rats, we found that spontaneous BLA neuronal firing was acutely (<30 min) increased after IL-1β, followed by a return to baseline level, particularly in the basal nucleus of the BLA complex. To verify and expand on effects of peripheral inflammation, we tested whether another, long-lasting inflammagen also changes BLA neuronal firing. Lipopolysaccharide (250 μg/kg, i.p.) increased BLA firing rate acutely (<30 min) and persistently. The findings demonstrate a rapid effect of peripheral inflammation on BLA activity and suggest a link between BLA neuronal firing and triggering of behavioral consequences of peripheral inflammation. These findings are a first step toward understanding the neuronal basis of depressive behavior caused by acute peripheral inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。