Transcriptome analysis of Sinorhizobium meliloti during symbiosis

苜蓿中华根瘤菌共生过程中的转录组分析

阅读:6
作者:Frederic Ampe, Ernö Kiss, Frédérique Sabourdy, Jacques Batut

Background

Rhizobia induce the formation on specific legumes of new organs, the root nodules, as a result of an elaborated developmental program involving the two partners. In order to contribute to a more global view of the genetics underlying this plant-microbe symbiosis, we have mined the recently determined Sinorhizobium meliloti genome sequence for genes potentially relevant to symbiosis. We describe here the construction and use of dedicated nylon macroarrays to study simultaneously the expression of 200 of these genes in a variety of environmental conditions, pertinent to symbiosis.

Conclusions

In addition to exploring conditions for a genome-wide transcriptome analysis of the model rhizobium S. meliloti, the present work has highlighted the differential expression of several classes of genes during symbiosis. These genes are related to invasion, oxidative stress protection, iron mobilization, and signaling, thus emphasizing possible common mechanisms between symbiosis and pathogenesis.

Results

The expression of 214 S. meliloti genes was monitored under ten environmental conditions, including free-living aerobic and microaerobic conditions, addition of the plant symbiotic elicitor luteolin, and a variety of symbiotic conditions. Five new genes induced by luteolin have been identified as well as nine new genes induced in mature nitrogen-fixing bacteroids. A bacterial and a plant symbiotic mutant affected in nodule development have been found of particular interest to decipher gene expression at the intermediate stage of the symbiotic interaction. S. meliloti gene expression in the cultivated legume Medicago sativa (alfalfa) and the model plant M. truncatula were compared and a small number of differences was found. Conclusions: In addition to exploring conditions for a genome-wide transcriptome analysis of the model rhizobium S. meliloti, the present work has highlighted the differential expression of several classes of genes during symbiosis. These genes are related to invasion, oxidative stress protection, iron mobilization, and signaling, thus emphasizing possible common mechanisms between symbiosis and pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。