Optic nerve injury models under varying forces

不同力量下的视神经损伤模型

阅读:5
作者:Wu Sun #, Guojun Chao #, Mengqiu Shang #, Qiong Wu, Yanting Xia, Qiping Wei, Jian Zhou, Liang Liao

Conclusion

Precisely controlling the force of the optic nerve clamping injury model is necessary because different forces acting on the optic nerve will lead to differences in the loss of optic neurons, the conduction function of the optic nerve, and autophagy level in retinal tissues.

Methods

The rats were classified into 4 groups: sham operation (SH), 0.1, 0.3, and 0.5 N. Modeling was performed using the lateral optic nerve pulling method. Seven days after modeling, Brn3a immunofluorescence was used to detect retinal ganglion cell (RGC) number, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was used to detect RGC apoptosis, and flash visual evoked potential (FVEP) was used to detect the optic nerve function on days 1, 3, and 7 after modeling. In addition, LC3 II and P62 expression levels in retinal tissues were detected by western blotting to observe the changes in autophagy levels.

Purpose

To explore the pathological changes in optic nerve injury models under varying forces.

Results

RGC number decreased 7 d after modeling, and it showed a downward trend with increasing damaging force. The number of apoptotic RGCs in ganglion cell layer in the 0.3 and 0.5 N groups was increased and was higher than that in the 0.1 N group. The difference in FVEP of rats in each group was mainly reflected in the P2 peak latency. LC3 II and P62 expression levels in retinal tissue of 0.3 and 0.5 N groups were higher than those of the SH and 0.1 groups; however, the difference between the 0.1 N and SH groups was not statistically significant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。