Melatonin enhances KCl salinity tolerance by maintaining K+ homeostasis in Malus hupehensis

褪黑素通过维持湖北海棠体内的 K+ 稳态来增强其对 KCl 盐度的耐受性

阅读:8
作者:Zhijuan Sun #, Jianyu Li #, Dianming Guo #, Tianchao Wang, Yike Tian, Changqing Ma, Xiaoli Liu, Caihong Wang, Xiaodong Zheng

Abstract

Large amounts of potash fertilizer are often applied to apple (Malus domestica) orchards to enhance fruit quality and yields, but this treatment aggravates KCl-based salinity stress. Melatonin (MT) is involved in a variety of abiotic stress responses in plants. However, its role in KCl stress tolerance is still unknown. In the present study, we determined that an appropriate concentration (100 μm) of MT significantly alleviated KCl stress in Malus hupehensis by enhancing K+ efflux out of cells and compartmentalizing K+ in vacuoles. Transcriptome deep-sequencing analysis identified the core transcription factor gene MdWRKY53, whose expression responded to both KCl and MT treatment. Overexpressing MdWRKY53 enhanced KCl tolerance in transgenic apple plants by increasing K+ efflux and K+ compartmentalization. Subsequently, we characterized the transporter genes MdGORK1 and MdNHX2 as downstream targets of MdWRKY53 by ChIP-seq. MdGORK1 localized to the plasma membrane and enhanced K+ efflux to increase KCl tolerance in transgenic apple plants. Moreover, overexpressing MdNHX2 enhanced the KCl tolerance of transgenic apple plants/callus by compartmentalizing K+ into the vacuole. RT-qPCR and LUC activity analyses indicated that MdWRKY53 binds to the promoters of MdGORK1 and MdNHX2 and induces their transcription. Taken together, our findings reveal that the MT-WRKY53-GORK1/NHX2-K+ module regulates K+ homeostasis to enhance KCl stress tolerance in apple. These findings shed light on the molecular mechanism of apple response to KCl-based salinity stress and lay the foundation for the practical application of MT in salt stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。