Female glucagon receptor knockout mice are prone to steatosis but resistant to weight gain when fed a MASH-promoting GAN diet and a high-fat diet

雌性胰高血糖素受体基因敲除小鼠容易发生脂肪变性,但在喂食促进 MASH 的 GAN 饮食和高脂肪饮食时,体重不会增加

阅读:14
作者:Katrine D Galsgaard, Emilie Elmelund, Jenna E Hunt, Mark M Smits, Trisha J Grevengoed, Christina Christoffersen, Nils J Færgeman, Jesper Havelund, Nicolai J Wewer Albrechtsen, Jens J Holst

Abstract

Glucagon is secreted from the pancreatic alpha cells and regulates not only hepatic glucose production, but also hepatic lipid and amino acid metabolism. Thus, glucagon provides a switch from hepatic glucose and lipid storage towards lipid and amino acid breakdown fueling glucose production during fasting. However, the effects of genetic deletion of the glucagon receptor on lipid metabolism are unclear. We therefore assessed parameters of lipid metabolism in fasted and non-fasted male and female mice with permanent whole-body deletion of the glucagon receptor (Gcgr-/- mice). To investigate whether Gcgr-/- mice tolerated a diet promoting metabolic dysfunction-associated steatohepatitis (MASH) and steatosis, we fed female Gcgr-/- mice the Gubra Amylin Nonalcoholic steatohepatitis (GAN) diet and high-fat diet (HFD), respectively. We found that non-fasted Gcgr-/- mice fed standard chow showed hypercholesterolemia and increased liver fat (borderline significant in non-fasted male Gcgr-/- mice, but significant in the remaining groups). In the fasted state these changes were insignificant due to fasting-induced steatosis. When challenged with a GAN diet and HFD, female Gcgr-/- mice were prone to steatosis and dyslipidemia but resistant to weight gain. Taken together, our data highlight glucagon as an important physiological regulator of not just glucose, but also hepatic lipid metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。