Equine alveolar macrophages and monocyte-derived macrophages respond differently to an inflammatory stimulus

马肺泡巨噬细胞和单核细胞衍生的巨噬细胞对炎症刺激的反应不同

阅读:6
作者:Heng Kang, Gary Kwok Cheong Lee, Dorothee Bienzle, Luis G Arroyo, William Sears, Brandon N Lillie, Janet Beeler-Marfisi

Abstract

Alveolar macrophages (AMs) are the predominant innate immune cell in the distal respiratory tract. During inflammatory responses, AMs may be supplemented by blood monocytes, which differentiate into monocyte-derived macrophages (MDMs). Macrophages play important roles in a variety of common equine lower airway diseases, including severe equine asthma (SEA). In an experimental model, an inhaled mixture of Aspergillus fumigatus spores, lipopolysaccharide, and silica microspheres (FLS), induced SEA exacerbation in susceptible horses. However, whether equine AMs and MDMs have differing immunophenotypes and cytokine responses to FLS stimulation is unknown. To address these questions, alveolar macrophages/monocytes (AMMs) were isolated from bronchoalveolar lavage fluid and MDMs derived from blood of six healthy horses. Separately, AMMs and MDMs were cultured with and without FLS for six hours after which cell surface marker expression and cytokine production were analyzed by flow cytometry and a bead-based multiplex assay, respectively. Results showed that regardless of exposure conditions, AMMs had significantly higher surface expression of CD163 and CD206 than MDMs. Incubation with FLS induced secretion of IL-1β, IL-8, TNF-α and IFN-γ in AMMs, and IL-8, IL-10 and TNF-α in MDMs. These results suggest that AMMs have a greater proinflammatory response to in vitro FLS stimulation than MDMs, inferring differing roles in equine lung inflammation. Variability in recruitment and function of monocyte-macrophage populations warrant more detailed in vivo investigation in both homeostatic and diseased states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。