Sound Stimulation Can Affect Saccharomyces cerevisiae Growth and Production of Volatile Metabolites in Liquid Medium

声音刺激可影响酿酒酵母在液体培养基中的生长和挥发性代谢物的产生

阅读:7
作者:Alastair Harris, Melodie A Lindsay, Austen R D Ganley, Andrew Jeffs, Silas G Villas-Boas

Abstract

The biological effect of sound on microorganisms has been a field of interest for many years, with studies mostly focusing on ultrasonic and infrasonic vibrations. In the audible range (20 Hz to 20 kHz), sound has been shown to both increase colony formation and disrupt microbial growth, depending upon the organism and frequency of sound used. In the brewer's yeast Saccharomyces cerevisiae, sound has been shown to significantly alter growth, increase alcohol production, and affect the metabolite profile. In this study, S. cerevisiae was exposed to a continuous 90 dB @ 20 μPa tone at different frequencies (0.1 kHz, 10 kHz, and silence). Fermentation characteristics were monitored over a 50-h fermentation in liquid malt extract, with a focus on growth rate and biomass yield. The profile of volatile metabolites at the subsequent stationary phase of the ferment was characterised by headspace gas chromatography-mass spectrometry. Sound treatments resulted in a 23% increase in growth rate compared to that of silence. Subsequent analysis showed significant differences in the volatilomes between all experimental conditions. Specifically, aroma compounds associated with citrus notes were upregulated with the application of sound. Furthermore, there was a pronounced difference in the metabolites produced in high- versus low-frequency sounds. This suggests industrial processes, such as beer brewing, could be modulated by the application of audible sound at specific frequencies during growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。