Metformin Suppresses Cancer Stem Cells through AMPK Activation and Inhibition of Protein Prenylation of the Mevalonate Pathway in Colorectal Cancer

二甲双胍通过激活 AMPK 和抑制结直肠癌中甲羟戊酸途径的蛋白质异戊烯化来抑制癌症干细胞

阅读:7
作者:Yoojeong Seo, Janghyun Kim, Soo Jung Park, Jae Jun Park, Jae Hee Cheon, Won Ho Kim, Tae Il Kim

Abstract

Metformin is a well-known AMPK (AMP-activated protein kinase) activator that suppresses cancer stem cells (CSCs) in some cancers. However, the mechanisms of the CSC-suppressing effects of metformin are not yet well understood. In this study, we investigated the CSC-suppressive effect of metformin via the mevalonate (MVA) pathway in colorectal cancer (CRC). Two colorectal cancer cell lines, HT29 and DLD-1 cells, were treated with metformin, mevalonate, or a combination of the two. We measured CSC populations by flow cytometric analysis (CD44+/CD133+) and by tumor spheroid growth. The expression of p-AMPK, mTORC1 (pS6), and key enzymes (HMGCR, FDPS, GGPS1, and SQLE) of the MVA pathway was also analyzed. We investigated the effects of metformin and/or mevalonate in xenograft mice using HT29 cells; immunohistochemical staining for CSC markers and key enzymes of the MVA pathway in tumor xenografts was performed. In both HT29 and DLD-1 cells, the CSC population was significantly decreased following treatment with metformin, AMPK activator (AICAR), HMG-CoA reductase inhibitor (simvastatin), or mTOR inhibitor (rapamycin), and was increased by mevalonate. The CSC-suppressing effect of these drugs was attenuated by mevalonate. The results of tumor spheroid growth matched those of the CSC population experiments. Metformin treatment increased p-AMPK and decreased mTOR (pS6) expression; these effects were reversed by addition of mevalonate. The expression of key MVA pathway enzymes was significantly increased in tumor spheroid culture, and by addition of mevalonate, and decreased upon treatment with metformin, AICAR, or rapamycin. In xenograft experiments, tumor growth and CSC populations were significantly reduced by metformin, and this inhibitory effect of metformin was abrogated by combined treatment with mevalonate. Furthermore, in the MVA pathway, CSC populations were reduced by inhibition of protein prenylation with a farnesyl transferase inhibitor (FTI-277) or a geranylgeranyl transferase inhibitor (GGTI-298), but not by inhibition of cholesterol synthesis with a squalene synthase inhibitor (YM-53601). In conclusion, the CSC-suppressive effect of metformin was associated with AMPK activation and repression of protein prenylation through MVA pathway suppression in colorectal cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。