Neuropeptide apelin presented in the dopaminergic neurons modulates the neuronal excitability in the substantia nigra pars compacta

多巴胺能神经元中存在的神经肽阿扑素调节黑质致密部神经元的兴奋性

阅读:7
作者:Cui Liu, Nan-Wei Kang, Ying Wang, Yan Xue, Xin-Yi Chen, Lei Chen

Abstract

The dopaminergic neurons in the substantia nigra pars compacta are characterized by autonomous pacemaking activity. The spontaneous firing activity of nigral dopaminergic neurons plays an important role in physiological function and is essential for their survival. Importantly, the spontaneous firing activity may also be involved in the preferential vulnerability of the nigral dopaminergic neurons in Parkinson's disease (PD). The neuropeptide apelin was reported to exert neuroprotective effects in neurodegenerative diseases, including PD. And it was noticed that apelin modulates neuronal activity in some brain regions. The present study investigated the electrophysiological and behavioral effects of apelin in the substantia nigra. Double-labeling immunofluorescence showed that apelin was present in nigral dopaminergic neurons and that these neurons expressed apelin receptor APJ. Further single unit in vivo electrophysiological recordings revealed that endogenous apelin tonically increased the firing rate of nigral dopaminergic neurons in both normal and parkinsonian animals. Exogenous apelin-13 exerted excitatory effects on the majority of nigral dopaminergic neurons, yet reduced excitability in a subset of neurons. In addition, nigral application of apelin-13 increased motor activity in normal rats and blocking endogenous apelin reduced motor activity. Considering the involvement of the spontaneous firing activity of nigral dopaminergic neurons in the development of PD and the possibility that apelin acts in an autocrine manner on apelin receptors expressed by nigral dopaminergic neurons, the modulation of the spontaneous firing activity of nigral dopaminergic neurons by apelin may serve as a neuroprotective factor in PD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。