Monoamine oxidase A activity in fibroblasts as a functional confirmation of MAOA variants

成纤维细胞中的单胺氧化酶 A 活性可作为 MAOA 变体的功能确认

阅读:5
作者:Tessa M A Peters, Irma Lammerts van Bueren, Ben P B H Geurtz, Karlien L M Coene, Nicole de Leeuw, Han G Brunner, Jón J Jónsson, Michèl A A P Willemsen, Ron A Wevers, Marcel M Verbeek

Abstract

Monoamine oxidase A (MAO‐A) deficiency is a rare inborn error of metabolism with impaired degradation of biogenic amines including 5‐hydroxytryptamine (5‐HT), resulting in borderline intellectual disability and behavioral abnormalities. Genetic variants in MAOA need functional confirmation to enable a definite diagnosis. To this end, we developed an inexpensive, simple and nonradioactive MAO‐A activity assay based on the conversion of 5‐HT into 5‐hydroxyindoleacetic acid (5‐HIAA). Fibroblast cell lysates were incubated with 5‐HT and aldehyde dehydrogenase to allow 5‐HIAA production. 5‐HIAA was quantified using high‐performance liquid chromatography with fluorimetric detection. We optimized reaction mixture components, pH, and substrate concentration and tested linearity and specificity of the assay. We verified the functional validity of the enzyme assay using fibroblasts of controls, female mutation carriers and MAO‐A deficient patients. This included a newly described patient with a novel MAOA variant (c.1336G>A, p.(Glu446Lys)), who represents the fifth MAO‐A deficiency family so far. The optimized enzyme assay showed good linearity and specificity. Application to clinical samples showed a 100% differentiation of affected patients (with negligible MAO‐A enzyme activity) and controls or mutation carriers. In conclusion, the described MAO‐A activity assay is easy to implement and can readily be used to test the pathogenicity of variants in the MAOA gene in a clinical setting. Especially in this era of whole‐exome (and whole‐genome) sequencing, this functional assay fulfills a clinical need for functional confirmation of a suspected diagnosis of MAO‐A deficiency.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。