Discussion
Our results demonstrate that inflammation-induced FGR is associated with increased placental HIF-1α accumulation; however, expression of this transcription factor may not correlate with regions of hypoxia in late-gestation placentas. The GTN-mediated attenuation of placental HIF-1α accumulation in LPS-treated rats provides insight into the mechanism by which GTN improves inflammation-induced complications of pregnancy.
Methods
Levels of inflammatory factors in maternal plasma were measured using a multiplex assay after an injection of low-dose lipopolysaccharide (LPS) to rats on gestational day (GD) 13.5. Following three additional daily LPS injections from GD14.5-16.5, GD17.5 placentas were harvested for HIF-1α immunolocalisation; serial sections were also stained for the hypoxia marker pimonidazole. A subset of rats received LPS injections along with GTN delivered continuously (25 μg/h via a transdermal patch) on GD12.5-GD17.5.
Results
Within two hours of LPS administration, levels of maternal pro-inflammatory cytokines were increased compared with saline-treated controls. GD17.5 placentas of growth-restricted fetuses exhibited increased HIF-1α accumulation; however, this did not correlate with pimonidazole staining for which no differences were observed between groups. Furthermore, the LPS-mediated increases in maternal inflammatory cytokine levels and placental HIF-1α accumulation did not occur in rats treated with GTN.
