AMPK/SIRT1 Deficiency Drives Adjuvant-Induced Arthritis in Rats by Promoting Glycolysis-Mediated Monocytes Inflammatory Polarization

AMPK/SIRT1 缺乏通过促进糖酵解介导的单核细胞炎症极化导致大鼠佐剂性关节炎

阅读:4
作者:Dan-Dan Wang #, Chi-Yi He #, Yi-Jin Wu, Liang Xu, Chao Shi, Opeyemi Joshua Olatunji, Jian Zuo, Cong-Lan Ji

Background

Exact roles of many metabolic regulators in rheumatoid arthritis (RA) are to be clarified. This study aimed to further characterize the impacts of silent information regulator 1 (SIRT1) status changes on this disease.

Conclusion

SIRT1 deficiency is implicated in AIA-related immune abnormality and metabolism alteration. Activating this signaling with resveratrol would impair the inflammatory polarization of monocytes, and consequently ease the severity of RA.

Methods

Fluctuation pattern of SIRT1 expression in adjuvant-induced arthritis (AIA) rats was monitored using periodically collected white blood cells. Another bath of AIA rats were treated by SIRT1 agonist resveratrol. Blood from these rats was used to separate monocytes and plasma, which were subjected to polymerase chain reaction (PCR), enzyme linked immunosorbent assay (ELISA), and biochemical analyses. Clinical implication of SIRT1 activation was verified by treating AIA rat monocytes with SIRT1 agonist and overexpression vector in vitro.

Results

SIRT1 deficiency occurred in AIA rats, which was accompanied with down-regulation of interleukin 10 (IL-10) and arginase-1 (ARG-1). Resveratrol eased oxidative stress and increased IL-10 production in vivo. Results of ELISA analysis demonstrated that resveratrol attenuated AIA severity in rats. Furthermore, it restored the altered levels of triglyceride, lactate and pyruvate in blood. Resveratrol promoted IL-10 production, and suppressed glycolysis of AIA monocytes cultured in vitro. SIRT1 overexpression similarly reshaped differentiation profile of AIA monocytes, evidenced by changes in metabolism indicators, IL-10 production and AMP-activated protein kinase (AMPK) pathway status. Although overexpressing SIRT1 in normal cells did not affect glycolysis significantly, it attenuated AMPK antagonist-caused abnormality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。