Conclusions
Hypoxia did not clearly induce a more aggressive phenotype in medulloblastoma cells. Despite this result, intetumumab decreased medulloblastoma cell proliferation and migration and variably decreased VEGF and c-Myc expression in hypoxic conditions. Targeting α(v) integrins represents a promising potential adjuvant modality in the treatment of medulloblastoma, particularly subtypes that metastasize and overexpress VEGF and c-Myc.
Methods
Cells were grown at 21% and 1% O(2) and in the presence or absence of intetumumab. Measures of malignancy evaluated included cell proliferation, cell migration, and expression of vascular endothelial growth factor (VEGF), α(v) integrins, HIF-1α, and c-Myc.
Results
Both cell lines robustly expressed α(v) integrins. Hypoxic DAOY cells showed significantly increased proliferation compared with normoxic controls (p < 0.05), whereas D283 Med cells did not. Both cell lines exhibited a dose-dependent decrease in proliferation when treated with intetumumab (p < 0.05). Hypoxia did not increase DAOY migration, but intetumumab significantly inhibited migration at both oxygen conditions (p < 0.05). Intetumumab significantly decreased VEGF levels in DAOY cells at both oxygen conditions (p < 0.05) and in normoxic D283 cells (p < 0.01). Neither cell line demonstrated increased HIF-1α expression in response to hypoxia. However, hypoxic D283 Med cells grown in the presence of intetumumab demonstrated significantly decreased c-Myc expression (p < 0.05). Conclusions: Hypoxia did not clearly induce a more aggressive phenotype in medulloblastoma cells. Despite this result, intetumumab decreased medulloblastoma cell proliferation and migration and variably decreased VEGF and c-Myc expression in hypoxic conditions. Targeting α(v) integrins represents a promising potential adjuvant modality in the treatment of medulloblastoma, particularly subtypes that metastasize and overexpress VEGF and c-Myc.
