Advanced Glycation End Products Impair Voltage-Gated K+ Channels-Mediated Coronary Vasodilation in Diabetic Rats

晚期糖基化终产物损害糖尿病大鼠电压门控 K+ 通道介导的冠状动脉血管扩张

阅读:6
作者:Wen Su, Weiping Li, Hui Chen, Huirong Liu, Haixia Huang, Hongwei Li

Background

We have previously reported that high glucose impairs coronary vasodilation by reducing voltage-gated K+ (Kv) channel activity. However, the underlying mechanisms remain unknown. Advanced glycation end products (AGEs) are potent factors that contribute to the development of diabetic vasculopathy. The

Conclusions

Excessive formation of AGEs impairs Kv channels in VSMCs, then leading to attenuation of Kv channels-mediated coronary vasodilation.

Methods

Patch-clamp recording and molecular biological techniques were used to assess the function and expression of Kv channels. Vasodilation of isolated rat small coronary arteries was measured using a pressurized myograph. Treatment of isolated coronary vascular smooth muscle cells (VSMCs) and streptozotocin-induced diabetic rats with aminoguanidine, the chemical inhibitor of AGEs formation, was performed to determine the contribution of AGEs.

Results

Incubation of VSMCs with high glucose reduced Kv current density by 60.4 ± 4.8%, and decreased expression of Kv1.2 and Kv1.5 both at the gene and protein level, whereas inhibiting AGEs formation or blocking AGEs interacting with their receptors prevented high glucose-induced impairment of Kv channels. In addition, diabetic rats manifested reduced Kv channels-mediated coronary dilation (9.3 ± 1.4% vs. 36.9 ± 1.4%, P < 0.05), which was partly corrected by the treatment with aminoguanidine (24.4 ± 2.2% vs. 9.3 ± 1.4%, P < 0.05). Conclusions: Excessive formation of AGEs impairs Kv channels in VSMCs, then leading to attenuation of Kv channels-mediated coronary vasodilation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。