MIG-7 and phosphorylated prohibitin coordinately regulate lung cancer invasion/metastasis

MIG-7和磷酸化抑制素协同调控肺癌侵袭/转移

阅读:8
作者:Ming-Yi Ho, Chi-Ming Liang, Shu-Mei Liang

Abstract

Growth factors and COX-2/PGE2 enhance lung cancer invasion/metastasis via PI3K/Akt and RAS/Raf. Here, we explored their mechanism of action further. We found first that higher levels of migration inducting gene-7 protein (MIG-7) and PHB phosphorylated at threonine 258 (phospho-PHBT258) are positively correlated with advanced stages of human lung cancer in tissue microarray. PGE2 or growth factors such as EGF, HGF and IGF-1 increased complex formation of phospho-PHBT258 with Ras, phospho-AktS473, phospho-Raf-1S338, MEKK1 and IKKα/βS176/180 in the raft domain transiently within 1 hour and MIG-7 in the cytosol 12-24 hours later. Association of phospho-PHBT258 with MEKK1 but not MEKK3 activates IKK/IκB/NF-κB and MEK/ERK to increase cellular COX-2/PGE2 and an E-cadherin suppressor Snail leading to enhancement of epithelial-mesenchymal transition (EMT) and lung cancer migration/invasion. MIG-7, on the other hand, was induced by growth factors and PGE2 via Akt/GSK-3β in a phospho-PHBT258 independent manner. MIG-7 increased two E-cadherin suppressors ZEB-1 and Twist to enhance EMT and cancer migration/invasion. Downregulating phospho-PHBT258 and MIG-7 had an additive effect on attenuating lung cancer invasion/metastasis and prolonging the survival of xenograft mice. Phospho-PHBT258 and MIG-7 may thus play complementary roles in the initiation and sustainment of the effects of growth factors and COX-2/PGE2 on cancer invasion/metastasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。