Amino acid substitutions of MagA in Klebsiella pneumoniae affect the biosynthesis of the capsular polysaccharide

肺炎克雷伯菌中 MagA 的氨基酸取代影响荚膜多糖的生物合成

阅读:17
作者:Tzu-Lung Lin, Feng-Ling Yang, An-Suei Yang, Hung-Pin Peng, Tsung-Lin Li, Ming-Daw Tsai, Shih-Hsiung Wu, Jin-Town Wang

Abstract

Mucoviscosity-associated gene A (magA) of Klebsiella pneumoniae contributes to K1 capsular polysaccharide (CPS) biosynthesis. Based on sequence homology and gene alignment, the magA gene has been predicted to encode a Wzy-type CPS polymerase. Sequence alignment with the Wzy_C and RfaL protein families (which catalyze CPS or lipopolysaccharide (LPS) biosynthesis) and topological analysis has suggested that eight highly conserved residues, including G308, G310, G334, G337, R290, P305, H323, and N324, were located in a hypothetical loop region. Therefore, we used site-directed mutagenesis to study the role of these residues in CPS production, and to observe the consequent phenotypes such as mucoviscosity, serum and phagocytosis resistance, and virulence (as assessed in mice) in pyogenic liver abscess strain NTUH-K2044. Alanine substitutions at R290 or H323 abolished all of these properties. The G308A mutant was severely impaired for these functions. The G334A mutant remained mucoid with decreased CPS production, but its virulence was significantly reduced in vivo. No phenotypic change was observed for strains harboring magA G310A, G337A, P305A, or N324A mutations. Therefore, R290, G308, H323, and G334 are functionally important residues of the MagA (Wzy) protein of K. pneumoniae NTUH-K2044, capsular type K1. These amino acids are also likely to be important for the function of Wzy in other capsular types in K. pneumoniae and other species bearing Wzy_C family proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。