Methotrexate-Loaded Solid Lipid Nanoparticles: Protein Functionalization to Improve Brain Biodistribution

载甲氨蝶呤的固体脂质纳米粒子:蛋白质功能化以改善脑生物分布

阅读:9
作者:Elisabetta Muntoni, Katia Martina, Elisabetta Marini, Marta Giorgis, Loretta Lazzarato, Iris Chiara Salaroglio, Chiara Riganti, Michele Lanotte, Luigi Battaglia

Abstract

Glioblastoma is the most common and invasive primary tumor of the central nervous system and normally has a negative prognosis. Biodistribution in healthy animal models is an important preliminary study aimed at investigating the efficacy of chemotherapy, as it is mainly addressed towards residual cells after surgery in a region with an intact blood⁻brain barrier. Nanoparticles have emerged as versatile vectors that can overcome the blood⁻brain barrier. In this experimental work, solid lipid nanoparticles, prepared using fatty acid coacervation, have been loaded with an active lipophilic ester of cytotoxic drug methotrexate, and functionalized with either transferrin or insulin, two proteins whose receptors are abundantly expressed on the blood⁻brain barrier. Functionalization has been achieved by grafting a maleimide moiety onto the nanoparticle's surface and exploiting its reactivity towards thiolated proteins. The nanoparticles have been tested in vitro on a blood⁻brain barrier cellular model and in vivo for biodistribution in Wistar rats. Drug metabolites, in particular 7-hydroxymethotrexate, have also been investigated in the animal model. The data obtained indicate that the functionalization of the nanoparticles improved their ability to overcome the blood⁻brain barrier when a PEG spacer between the proteins and the nanoparticle's surface was used. This is probably because this method provided improved ligand⁻receptor interactions and selectivity for the target tissue.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。