Robin: an intuitive wizard application for R-based expression microarray quality assessment and analysis

Robin:一款基于 R 的表达微阵列质量评估和分析的直观向导应用程序

阅读:7
作者:Marc Lohse, Adriano Nunes-Nesi, Peter Krüger, Axel Nagel, Jan Hannemann, Federico M Giorgi, Liam Childs, Sonia Osorio, Dirk Walther, Joachim Selbig, Nese Sreenivasulu, Mark Stitt, Alisdair R Fernie, Björn Usadel

Abstract

The wide application of high-throughput transcriptomics using microarrays has generated a plethora of technical platforms, data repositories, and sophisticated statistical analysis methods, leaving the individual scientist with the problem of choosing the appropriate approach to address a biological question. Several software applications that provide a rich environment for microarray analysis and data storage are available (e.g. GeneSpring, EMMA2), but these are mostly commercial or require an advanced informatics infrastructure. There is a need for a noncommercial, easy-to-use graphical application that aids the lab researcher to find the proper method to analyze microarray data, without this requiring expert understanding of the complex underlying statistics, or programming skills. We have developed Robin, a Java-based graphical wizard application that harnesses the advanced statistical analysis functions of the R/BioConductor project. Robin implements streamlined workflows that guide the user through all steps of two-color, single-color, or Affymetrix microarray analysis. It provides functions for thorough quality assessment of the data and automatically generates warnings to notify the user of potential outliers, low-quality chips, or low statistical power. The results are generated in a standard format that allows ready use with both specialized analysis tools like MapMan and PageMan and generic spreadsheet applications. To further improve user friendliness, Robin includes both integrated help and comprehensive external documentation. To demonstrate the statistical power and ease of use of the workflows in Robin, we present a case study in which we apply Robin to analyze a two-color microarray experiment comparing gene expression in tomato (Solanum lycopersicum) leaves, flowers, and roots.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。